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Abstract: An algorithm is presented for computing a column permutation Hl and a QR-
factorization Afl = QR of an m by n (m >_. n) matrix A such that a possible rank deficiency
of A will be revealed in the triangular factor R having a small lower right block. For low rank
deficient matrices, the algorithm is guaranteed to reveal the rank of A and the cost is only slightly
more than the cost of one regular QR-factorization. A posteriori upper and lower bounds on the
singular values of A are derived and can be used to infer the numerical rank of A.
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1. Introduction
A very useful factorization of an m by n (m _ n) matrix A is the QR-factorization, given

by Afl = QR, where TI E R..n is a permutation matrix, Q E R m"x has orthogonal columns and
satisfies QTQ = I and R E R n"' is upper triangular.

If A has full rank, then R is nonsingular. In many applications in which A is nearly rank
deficient, it is desirable to select the permutation II so that the rank deficiency is exhibited in R
having a small lower right block [10]. For if R is partitioned as

R(Ril R12)
0 R22/

where R22 is r by r, then it is easy to show that an-r+i(A) _ 11R 22112, where we have used the
notation ai to denote the i-th singular value of A, with a, -> a2 _> ... _ an. Therefore, if 1JR22112
is small, then A has at least r small singular values and thus is close to being rank r deficient. The
converse, unfortunately, is not true. In other words, if A has r small singular values, then it is not
guaranteed that a given QR-factorization of A has a small 11R 22112, as the following example shows.

Example 1 Let An E R" n n be the matrix of order n illustrated below for n -4:

An diag (1,-s, _ s 1 -c ...

.~2n 1 .0 1 "-. ... C

-Ci
( . 00 1

where s and c satisfy s2 + c2 - 1. For n - 50, c = .2, an (An) P 10- 4.On the other hand, An is its
own QR-factorization and obviously has no small R2 2 block for any value of r.

Besides being able to reveal rank deficiency of A, a QR-factorization with a small R22 block
is very useful in many applications, such as in rank deficient least squares computation [7] and
in the subset selection problem [6, 7]. Therefore a variety of techniques have been proposed to
compute it. Since the QR factorization is essentially unique once the permutation II is fixed, these
techniques all amount to finding an appropriate column permutation of A. Perhaps the most well-
known of these is the column pivoting strategy [2j. Although this strategy is usually very effective
in producing a triangular factor R with a small IIR2211, very little is known in theory about its
behaviour and it can fail on some matrices [5]. For example, column pivoting leaves the matrices
An in Example 1 unchanged and fails to produce a small 11R2211. While such examples are rare in
practice, it is still of fundamental interest to understand what distinguishes column permutations
of A that produce rank-revealing QR-factorizations from permutations that don't, and to construct
algorithms that can identify them. In this paper, we present an algorithm that is guaranteed to
work for low rank deficient matrices and costs only slightly more than one regular QR-factorization
of A. In addition, empirical evidence shows that it works for most higher rank deficient matrices

as well. It is important to note that even if the singular value decomposition (SVD) of A is known,
it is still not obvious how to compute such a rank revealing QR-factorization. In [6], an algorithm
is presented for solving the subset selection problem and is based on first computing the SVD of
A. Our algorithm does not require computing the SVD of A. In the rank one deficient case, the

two algorithms produce the same results but for higher dimensional rank deficient matrices, they
are different.

In Section 2, we shall first study the rank one deficiency case. In Section 3, we present

an algorithm for the general rank deficiency case and derive a priori bounds on the size of the

* 2.
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computed 11R2211 and a poateriori upper and lower bounds on the singular values of A. In Section
4, we discuss how this algorithm can be implemented efficiently. Some numerical examples will be
given in Section 5.

We shall use the notation xi or (x)i to denote the i-th component of a vector x, and ai to
denote the (i,j)-th element of matrix A.

2. Revealing Rank One Deficiency
Assume that A is nearly rank one deficient. We would like to find a column permutation

of A such that the resulting QR-factorization has a small pivotal element rn.. It turns out that
this permutation can be found by inspecting the size of the elements of the singular vector of A
corresponding to the smallest singular value a,.. This procedure was first pointed out in [6].

Theorem 2.1.
Suppose that we have a vector x E R" with I1X112 = I such that IIAxII 2 = e and let 11 be a

permutation such that if llTx = y, then ly,,I = II[Yll. Then if AIl = QR is the QR-factorization of
All, then

IrnnI < -f.

Proof.
-0 The proof of this theorem was stated as Exercise P6.4-4 in [7]. We shall prove it here. First

we note that since lyI = Ilyll and IIYI12 = I1X112 = 1, we have ly,,I > Next we have

QTA =QTAnnTX=Ry= (rui 'r n)y

Therefore,
e = IIAX112 = I 1QTAxII 2 = IIRyII2 > jr.ny.l,

from which the result follows.

Let v E R" with IjvII = 1 be the right singular vector of A corresponding to the smallest
singular value a,,. Then we have

IIAvI 2 = an.
Therefore, by Theorem 2.1, if we define the permutation II by

I(n Tv)I. = IIvllo

then All has a QR-factorization with a pivot rnn at least as small as V/on in absolute value.

Since only the permutation I1 is needed, it is not necessary to compute the SVD of A in order
to find v exactly. In practice, one can use a few steps of inverse iteration [3, 9] to compute an
approximation to v from which the permutation II can be determined. In the more interesting case
where a,' -,Ca- the inverse iteration should converge rapidly. This suggests a two-pass algorithm
in which one first computes any QR-factorization of A, then performs inverse iteration with R to
find an approximate v, determines I1 and then computes the QR factorization of AIl. The above
procedure is similar to a two-pass algorithm derived in [4] for computing a LU factorization of a
square matrix B with a small n-th pivot. In fact, the two algorithms are very much related but
we will not pursue that here.

g: ~*
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3. Revealing Higher Dimensional Rank Deficiency

In this section, we consider the case where A is nearly rank r deficient, with r > 1. Our goal
is to find a permutation fl such that if

Al QR Q( R11 R12

A 0 R 22 ]

is the QR-factorization of Arl, with R 22 E Rx r then IiR2211 is small in some norm.

A natural way to extend the one dimensional result of Section 2 is to repeatedly apply the one
dimensional algorithm, for r = 1, 2,..., to Ri 1 , the leading principal triangular part of R. Suppose
that we have already isolated a small r by r block R 22 . To isolate a small (r + 1) by (r + 1) block,
we compute, using the one dimensional algorithm given in Section 2, a permutation P such that
R 11P = QiRi1 is the QR-factorization of R 1 1P and where the (n - r, n - r)-th element of R11 is
small. Then with 0o1)

Q1 0)

it can be easily verified that

0 R22

is the QR-factorization of Aft.

The above procedure can be summarized in the following algorithm

Algorithm RRQR(r)

Purpose: Computes a permutation IT and a QR-factorization

All R' Q R11 R12
AH =Q R Q 0 R22

with a small R22 E R"" to reveal a possible rank r deficiency in A.

Compute any QR-factorization of A: AI -- QR.
Initialize W E R ~" to zero.
For i = n,n - 1,...,n- r+ 1, do

1. R11 -- leading i x i block of R.

2. Compute the singular vector v E R' of R1 corresponding to amin(Rij) with 11V11 2 = 1 and set
bi = O'min(Rll).

3. Compute a permutation P E RI 'x such that I(PTv)I -IIPrtVl 0.

4. Assign -m E R n to the i-th column of W.

* . 5. Compute W 0- 1TweePc

6. Compute the QR-factorization: R1 IP = QIRii.

7. 11.- I

2.w
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9-' .R --Q'? 1 1

End For

The matrix W is used to store the singular vectors corresponding to the smallest singular values
of the successive leading triangular blocks R 11 . It is updated in the above algorithm for theoretical
reasons only (see Lemma 3.2) and need not be explicitly incorporated in an actual implementation.

For the above algorithm to produce the desired QR-factorization, we must prove the following
two assertions

1. At step 2, Rl has a small singular value so that the (i,i)-th element of RI is guaranteed to
be small.

2. At step 9, the last (i.e., the (n - i)-th) row of QTR12 is small.

If these two assertions are true, then the lower (n - i + 1) by (n - i + 1) lower block of R in step 9
is small and we have the desired QR-factorization.

We shall next prove more precise versions of these two assertions. With regard to the first
assertion, we have the following lemma.

Lemma 3.1. Let B E Rnxk be a matrix containing any subset of k columns of A, then

Omin(B) M ai(B) !5 Ok(A).

Proof. Follows from the variational characterization of singular values. See 17].

Since R11 is the first i columns of QTAII, by the Lemma 3.1, we have

0min(Rii) :5 ,(QTAI I ) - ai(A).

This guarantees that R1 1 has a small singular value if ai(A) is small, i.e., if the algorithm has not
yet "captured" the complete approximate null space of A.

Proving the second assertion is more subtle. We shall first need to establish some properties
of the matrix W employed in the algorithm.

Lemma 3.2. The matrix W =- [wn-r+l,. . . , wn] E R" ,r computed by Algorithm RRQR(r) satisfies
the following properties:

For i = n,n- 1,...,n - r+ 1

S. 11,12 1.
2. (wi)j = 0 for j > i.

3. j(w,),- = Iwill. >

4. IIAflwIj2 = 6, _< oi(A).

Proof. We shall prove the lemma by induction on r. The lemma is obviously true for the case r - I

because of the one dimensional result in Theorem 2.1. Now assume that the lemma is true for r - k.

•0 i ;:: :" " - ' "" " - -"" ' - " - " : - " " ".. - - • ' . - : " -
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That is, after k steps of Algorithm RRQR(k), the vectors tiv, for j =n, n -1,...,n - k+ 1, satisfies
the four properties stated in the lemma. We shall show that the vectors wj, for j = n,. . . , n - k,
computed by Algorithm RRQR(k + 1) also satisfy these properties. First observe that Algorithm
RRQR(k+ 1) is simply Algorithm RRQR(k) followed by one more pass through the loop with index
i = n - k. At step 5 of this last pass, the matrix W is updated by

W _Pr(-, Z.-k~l,... , IZ.)
_(,prj, P.i -si,..., )

where by the induction hypothesis, the vectors rj, j = n,... , n - k + 1 satisfies the properties

stated in the lemma. Note that since FT is a permutation affecting only the first n - k components
of each of the Zi vectors, the updated vectors wi, for j = n,..., n - k + 1, automatically satisfy the
first three properties. Moreover, V is chosen so that wn-k = ATt also satisfy these three properties.
To verify the fourth property for j = n, ... , n - k + 1, note that the permutation for Algorithm
RRQR(k + 1) is TIP and

IiAnFPwjIl2 = lIAnlPP ' i , 112 = lAn' iIl2 _< O'j

by the induction hypothesis. Finally, for j = n - k, we have

IiAlPw.-ki 2 = IIAflPP T II2 = IIllI 2

0 R2 2 / 0O

= IIRIIVl12
= amin (RI 1)

= 6 n-k

o<. .k (A)

where the last bound is arrived at by using Lemma 3.1, and the fact that R has the same singular
values as A. This completes the inductive proof.

I

We are now ready to state our main results.

Theorem 3.1. Let the matrix W E R" × * computed by Algorithm RRQR(r) be partitioned as
WT = (WT, W2T), where W2 E Rrxr is upper triangular and nonsingular. Then the QR-factorization

Afl = QR as computed by Algorithm RRQR(r) satisfies

1IR22112 <5 0.-, llijWj'll2.
Proof. Denote the columns of W by [Wn-r+,. , w]. Define y - QT rAwn.r+l E Rnxr. From

property 4 of Lemma 3.2, we have

IIY112 = 6 ,-r+I 5 _< ,

On the other hand, with el - (1,0,.. ,0 )T E Rt, we have

y = QT AITWej RWe, ( R(IW + R1 2W 2 'R 22W2 ,
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from which follows that

11Y112 2! IIR22W2eIII2 > I IR22112
IIWR'112

Combining the above, we get 11R22112
O'n-r+ l b> .n- r+ l 

>  I I --2211

- II 2 'II2
from which the desired result follows.

This theorem states that 1IR 22 112 is bounded by the r-th smallest singular values of A, provided
that IIW- 1 112 is not too large. From Lemma 3.2, we have that W2 is upper triangular, each one of its
columns has unit Euclidean length and is obviously nonsingular. Moreover, Algorithm RRQR can
be interpreted as trying to produce a well-conditioned W2 by putting the largest element in absolute
value of each column on the diagonal. In this sense, it is analogous to the strategy proposed in
[6], in which the permutation of II is obtained via a QR-factorization with column pivoting applied
to isolate a well-conditioned subset of the rows of the matrix formed by the r singular vectors
corresponding to the r smallest singular values of A. The present algorithm has the advantage that
the SVD of A need not be computed and that an a priori bound for 1JR2211 can be derived from
an a priori upper bound for IIW2-lI 2 . In fact, an a priori bound for individual elements of R22 is
possible.

Theorem 3.2. Algorithm RRQR(r) computes a permutation II and a QR-factorization of A given
by AII= QR where the elements of the lower r by r upper triangular block of R satisfy:

j-1-I-
Irij 1 :5a + ZI k k (3.1)k=i

< 2J-'ai-,f/ for n-r<i<j: _n. (3.2)

Proof. By employing Lemma 3.2, we have, for n - r < i _ j _ n,

o. i -IArlwil 2 = IIRwAII2 - I(Rwj)j = Zrik(wj)k

k=i

Isolating the k = j term in the sum and rearranging terms, we get

i"-1

Ira, (wi)iI oj+j:ZIrik(Wj)kI
k=i

Since by Lemma 3.2, I(wi),I = II(w,)II, :- 1, we have

j-i

I rq : i VoV_+ZEI rik I
k=i

Solving this recurrence in the index j, we get the bound given in (3.2). Using the bound ak/k <
aiv'nv in each term in the sum in (3.2), we get the bound in (3.2)

I

. -,:- -p-.-.- . . ..-. ...... . . ..-. . . . . . . ......-.. .-. ..-. ...., - " -.- .. . ' . . . ? ... .. . .. -. . ..
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The term 2 - in the bound (3.2) in Theorem 3.2 indicates that the bound for an element of
R22 is larger the further the element is from the main diagonal. In fact, the bound for the element
Irnr+l,nI grows like 2r . For large values of r, this bound can be quite large and overly conservative
for most problems encountered in practice. On the other hand, many problems in application have
small values of r, and for these problems, the bounds in Theorem 3.2 should be quite reasonable.
For example, if r = 4, then we have, for n - 4 < i < j :_ n,

max Ir 1 _< 16V~/- 7ui.Ii

Therefore, any small singular values of A will be revealed in the triangular factor R. In other
words, for low rank deficient matrices, Algorithm RRQR(r) is guaranteed to produce rank revealing
QR-factorizations.

4. Bounding the Singular Values

Very often, it is desirable to be able to infer the rank of A from its QR-factorization by
estimating the small singular values of A from the triangular factor R [1, 8]. From Theorem 3.1,
we can easily derive the following a posteriori bounds on the singular values of A in terms of the
matrices R and W computed by Algorithm RRQR(r).

Corollary 4.1. Let W E Rn x r and R E Rnx n be as computed by Algorithm RRQR(r). Let R 2
and W denote the lower right j by j upper triangular blocks of R and W respectively. Then, for

< J < r,
I ( 2rn - 12<-~ : '-+ 51I212: 'nl11 Wii (w')_ 112 - _--_IRI2_

The quantities 6n-j+l and IIRg2 l2 are computable a posteriori lower and upper bounds respec-

tively for the singular value an-i+i. If II(W2J)-l 2 is not much larger than the optimal value of
one, then the above Corollary states that these bounds should be very tight and one can therefore
infer the numerical rank of A. In practice, the value of IIR 2 12 can be estimated by more easily

computable norms of R*2'such as the 1-norm, the oo-norm and the Frobenius norm. These a
posteriori bounds also enable Algorithm RRQR to be implemented in an adaptive manner: the
algorithm can be terminated if the lower bounds indicate that all the small singular values of A
have been revealed.

5. Implementation Note

The main work of Algorithm RRQR consists of three parts : the computation of the initial QR-
factorization, the computation of the singular vector v of R11 by inverse iteration at each iteration
and the QR-factoring of R 1 1P at each iteration. Ignoring lower order terms, the first two takes
n2 (r - -) (assuming that Q needs not be accumulated) and In 2 r flops respectively, where I is the
number of inverse iterations used at each each iteration. Usually, I = 2 is sufficient in practice,
especially if an efficient condition number estimator is used to select the initial vector.

The re-factoring of R 1 1P, if done naively, say by using Householder transformations, would be
extremely inefficient. Due to the special structure of the problem, a much more efficient procedure
can be derived by using Given's rotation instead. The column of R11 to be permuted to the last
column can be swapped with adjacent columns one at a time until the last column is reached. For
example, if column I is to be permuted to column k, we can swap the pairs: (1, 2), (2,3),..., (k- 1, k)
successively. With each swap, exactly one nonzero is introduced in the lower triangular part of R11 ,
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which can then be annihilated by applying an appropriate Given's rotation from the left. In most
applications, these extra Given's rotation can be stored in factored form and do not have to be
applied to the orthogonal factor Q of the initial QR-factorization. Assuming the worst case in each
iteration, i.e., that the first column of R11 is to be permuted to the last every time, this takes 2n 2 r
flops. Therefore, the total work for Algorithm RRQR(r) is given by

W(r) = n2 (m - + In 2r + 2n2 r

= n2 (m - n) + 4n 2 r, assuming that I = 2.
3

Therefore, if r < n, the extra work performed after the initial QR factorization is of a lower order
and negligible, especially if m >> n. Even in the extreme case of r = n, W(n) = inn 2 + - n3 , which
is still smaller than the cost of 2mn 2 + 4n 3 for computing the SVD.

It is interesting to note that the overhead for the column pivoting strategy is O(mn) while the
overhead for RRQR is O(n 2 r). Therefore, if r is small and m >> n, the overhead of RRQR is less
than that for column pivoting.

6. Numerical Examples

In this section, we present a few numerical examples to illustrate the theory developed in
the earlier sections. All computations are done on a VAX/780 in single precision, with a relative
machine precision of about 10- 7 . The initial QR-factorization is performed with no column per-
mutation and the inverse iterations are performed with I = 5 with the initial vector chosen to be
(1,0, 1,0,.-., 1,O)T. For each of the examples, we compute the QR-factorization with Algorithm
RRQR, compute the lower and upper a posteriori bounds 6n-j+1 and 11R2112 given in Corollary
4.1, and compare these to the true singular values ornj+l and to the upper bounds obtained by
the regular QR-factorization with and without column pivoting.

The first example is the matrix A50 given earlier in the introduction. It turns out that, due to
round-off errors, QR with column pivoting actually pivots with this matrix. We therefore use the
following modified matrix instead

An = An + diag(ne, (n- 1),..-,e),

where e = 10-6. This small perturbation only change the singular values of the matrix by a small
relative amount and forces no column pivoting. The results are shown in Table 1, in which the
column permutations produced by RRQR and QR with column pivoting are also presented. We
see that in this case, Algorithm RRQR succeeds in revealing the one dimensional null space of
the matrix whereas QR with column pivoting fails to do so. Since the values of 11(w )-I 2 are
very close to one, the a posteriori bounds are very tight and there is no trouble in identifying
the numerical rank. In fact, since the lower bound for 049 is clearly not small, one can confidently
truncate the algorithm after only two iterations. Note that since the lower bounds 6i's are computed
only approximately by inverse iteration, they can actually be slightly larger than the true singular
values. But this slight inacurracy does not affect the ability to infer the rank.

The second example is the class of matrices defined as follows. Let Hn = I - ZeeT where
e = (1, 1,...,1)T. Define

C = H,5o ( 0 ,

where D is a diagonal matrix. Since Hn is orthogonal, the singular values of C are the diagonal
entries of D. The results for two different D's with well-defined numerical rank are presented in

• " " "-" "" " . " ]



Page 9

RRQR true RRQR pivoted QR regular QR
i lower 0i upper K upper K upper

50 9.29E-05 0.0001 0.0002 1 0.3678 50 0.3678
49 0.4349 0.4112 0.4538 48 0.4112 49 0.4112
48 0.4262 0.4222 0.4937 49 0.4227 48 0.4227
47 0.4531 0.4327 0.4967 46 0.4351 47 0.4351
46 0.4440 0.4431 0.5143 47 0.4495 46 0.4495
45 0.4722 0.4536 0.5179 44 0.4665 45 0.4665
44 0.4627 0.4642 0.5357 45 0.4868 44 0.4868
43 0.4924 0.4749 0.5399 42 0.5106 43 0.5106
42 0.4824 0.4858 0.5581 43 0.5382 42 0.5382
41 0.5137 0.4968 0.5627 40 0.5698 41 0.5698

Table 1: Results for Aso (K = corresponding column of A
permuted to i-th column of All)

Tables 2-3. In Table 4, we present an example where the numerical rank is not as well-defined. All
the results show that the a posteriori bounds producd by RRQR are tight and that they reveal the
numerical rank as predicted. QR with column pivoting also succeeds on these examples although
it is not possible to infer the rank since a lower bound on the singular values are not available. The
column permutations produced are also different than those of RRQR. Regular QR-factorization
with no pivoting fails in all cases.

In all the above examples, the actual values of II(W ) 1 11
2 are not much larger than the optimal

value of one, and are much smaller than that suggested by the a priori bounds given in Theorem
3.2. This is probably typical for most problems encountered in practice. In fact, we have not
succeeded in finding an example for which the a priori bounds are achieved. Thus, not only is
Algorithm RRQR guaranteed to work for low rank deficient matrices, it will almost always work
for high rank deficient ones as well.

7. Conclusion

In this paper, we have presented a simple and efficient algorithm for computing a QR--
factorization that is designed to reveal the numerical rank of a given matrix. Our theory shows
that the algorithm is guaranteed to work for low rank deficient matrices and numerical experiments
indicate that it is also very likely to work even in the high rank deficient cases. The a posteriori
bounds for the singular values, which are by-products of the algorithm, can be used to infer the
numerical rank of the matrix, without explicitly computing the SVD of the matrix. Thus, this spe-
cial QR-factorization could be used reliably and efficiently in many matrix computations for which
a rank-revealing QR-factorization is needed, such as in rank deficient least squares computations
and the subset selection problem.

Acknowledgement : The author would like to thank Dr. Robert Schreiber for helpful discussions
on the development of Algorithm RRQR and Professor Charles Van Loan for pointing out Theorem
2.1 in the book [7].
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RRQR true RRQR pivoted QR regular QR
I lower ai upper K upper K upper

10 0.0001 0.0001 0.0002 3 0.0001 10 0.0001
9 0.0001 0.0001 0.0002 6 0.0001 9 0.0001
8 0.0001 0.0001 0.0002 7 0.0002 8 0.0002
7 0.0001 0.0001 0.0002 10 0.0002 7 0.0002
6 0.0001 0.0001 0.0002 9 0.0002 5 1.0000
5 0.4472 1.0000 1.0000 8 1.0000 6 1.0000
4 0.4472 1.0000 1.0000 4 1.0000 4 1.0000

Table 2: Results for C with D = diag(1,1,1,1,1,10- 4 ,10- 4 ,10- 4 ,10- 4 ,10 - 4 )

RRQR true RRQR pivoted QR regular QR
lower ai upper K upper K upper

10 0.0001 0.0001 0.0002 5 0.0001 10 0.0001
9 0.0001 0.0001 0.0002 2 0.0001 8 0.0002
8 0.0001 0.0001 0.0002 8 0.0002 6 0.0002
7 0.0001 0.0001 0.0002 4 0.0002 4 1.0000
6 0.0001 0.0001 0.0002 6 0.0002 9 1.0000
5 0,4472 1.0000 1.0000 10 1.0000 2 1.0000
4 0.6325 1.0000 1.0000 7 1.0000 7 1.0000

Table 3: Results for C with D = diag(1,10- 4 ,1,10- 4 ,1,10-4,1,10- 4 ,1,10- 4 )

RRQR true RRQR pivoted QR regular QR
I lower a, upper K upper K upper

10 9.8E-06 9.8E-06 1.2E-05 1 1.3E-05 I 4.9E-05
9 0.0001 0.0001 0.0001 2 0.0001 2 1.0000
8 0.0009 0.0009 0.0017 3 0.0017 3 1.0000
7 0.0076 0.0100 0.0263 6 0.0263 10 1.0000
6 0.0706 0.1000 0.2193 4 0.2193 4 1.0000
5 0.4479 1.0000 1.0000 9 1.0000 5 1.0000
4 0.4490 1.0000 1.0000 5 1.0000 9 1.0000
3 0.6334 1.0000 1.0000 8 1.0000 8 1.0000
2 0.7767 1.0000 1.0000 7 1.0000 7 1.0000
1 0.8947 1.0000 1.0000 10 1.0000 6 1.0000

Table 4: Results for C with D = diag(10- 5 ,10- 4 ,10- 3 ,10- 2 ,10- 1, 1,1,1,1,1)
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